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Abstract 
 
At present, the main method of high-speed train chassis detection is using computer vision 
technology to extract keypoints from two related chassis images firstly, then matching these 
keypoints to find the pixel-level correspondence between these two images, finally, detection 
and other steps are performed. The quality and accuracy of image matching are very important 
for subsequent defect detection. Current traditional matching methods are difficult to meet the 
actual requirements for the generalization of complex scenes such as weather, illumination, 
and seasonal changes. Therefore, it is of great significance to study the high-speed train image 
matching method based on deep learning. This paper establishes a high-speed train chassis 
image matching dataset, including random perspective changes and optical distortion, to 
simulate the changes in the actual working environment of the high-speed rail system as much 
as possible. This work designs a convolutional neural network to intensively extract keypoints, 
so as to alleviate the problems of current methods. With multi-level features, on the one hand, 
the network restores low-level details, thereby improving the localization accuracy of 
keypoints, on the other hand, the network can generate robust keypoint descriptors. Detailed 
experiments show the huge improvement of the proposed network over traditional methods. 
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1. Introduction 

Image matching can be regarded as a basic task in the detection process of high-speed train 
chassis. The chassis is an important part connecting the train and the rail, so its safety detection 
is a key aspect to ensure the safety of high-speed railway train [1].   

At present, most of the detection schemes of high-speed railway trains in China are 
developed on the basis of Trouble of Moving EMU Detection System (TEDS) [2]. The method 
is to utilize computer vision technology to match the images collected by a line-array camera 
installed near the rails in different times, then using automatic technology or manpower to 
identify chassis faults or foreign objects. If any abnormality is detected, it will remind workers 
to respect. Compared with the traditional purely manual mode, this man-machine interaction 
saves a lot of time and reduces the demand for workers, thus improves the detection efficiency 
a lot.   

Considering a standard high-speed train images matching process. When a high-speed 
railway train passes through the image acquisition area of TEDS system, the detection system 
completes the speed measurement of the train firstly, then the line scan camera takes pictures 
of the train chassis at an image acquisition rate corresponding to the measured train speed, so 
that the length of the images in the direction of train travel is approximately equal to the 
historical images. Inputting the saved previous image Is and the currently image If located near 
the same chassis position into the computer, it extracts and matches the keypoints of the two 
associated images. Then, the homography transformation matrix Hfs between these two high-
speed railway train images is calculated to obtain the transformed If. In this way, the image If' 
under the coordinate of Is is obtained. So, the image matching between current and previous 
high-speed rail train chassis images is realized. In this task, most current matching methods 
are carried out in pixel space (intensity-based approach) or manual feature space (feature-
based approach) in a non-learnable manner. However, due to the speed measurement accuracy 
of the detection system is usually not so ideal, the imaging speed of the line scan camera does 
not match the actual running speed of the train, resulting in inconsistencies between the 
historical and current images of the same train chassis area, which brings challenges to the 
matching task. Moreover, as a result of the large changes in the appearance of the images 
caused by weather, light, and seasons at the time of collection, these traditional methods have 
problems such as low matching accuracy and lack of generalization ability. Since the quality 
of image matching is very important for subsequent tasks such as abnormal detection of the 
train chassis, there is an urgent need to improve the matching accuracy, and robustness to more 
complex scenes, which is of great significance. 

With the rapid development of deep learning in the field of computer vision, there are more 
and more learning image matching methods to solve the drawbacks of traditional image 
matching methods. However, most of the existing learning methods usually only use the 
deepest feature map, which is several times smaller than the original image (usually 4 or 8 
times) to detect and describe keypoints. The accuracy of locating keypoints in the deep feature 
map is definitely lower than that in the original image size. In addition, different keypoints in 
deep feature maps may share the same high level of semantic information. Therefore, their 
description vectors may be extremely similar, which degrades the performance of feature 
matching and thus inevitably reduces the accuracy of finding pixel-level correspondences, 
which is detrimental.  

To the best of our knowledge, this work is the first to complete high-speed train image 
registration using deep learning methods. This work proposes a convolutional neural network 
(CNN) based high-speed train chassis images matching method, and alleviates the above 
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limitations from two aspects. Firstly, deep and shallow feature maps extracted by the network 
are sampled to high resolution, so as to improve the localization accuracy of keypoints. 
Secondly, multi-scale feature maps are used to collect rich local feature information and screen 
out the most discriminating descriptors. In short, by extracting dense keypoints with high 
localization precision, the algorithm is robust to almost all complex situations faced by high-
speed railway.   

The contributions of this article are as follows: 
1. A CNN-based network that enables high-speed rail trains image matching, which 

improves robustness to complex illumination and weather conditions compared with 
traditional methods. 

2. A dataset Constructed for high-speed rail train chassis matching, including optical 
distortions such as random illumination changes and perspective changes to simulate the actual 
detection environment as much as possible. 

3. A multi-level feature extraction structure is designed to improve the localization 
accuracy of keypoints and the richness of the keypoint descriptors. 

The rest of this article is as follows. Sec. 2 reviews the related work on image matching. 
Sec. 3 presents the proposed network architecture and the detailed implementations. Sec. 4 
evaluates the performance of the proposed model. Sec. 5 concludes the paper. 

2. Related Research 
Traditional image matching methods are mainly divided into gray scale matching and feature-
based matching. Image matching based on gray scale can be regarded as an iterative 
optimization process that directly compares all the contents of two images [2-4]. Although the 
image matching method based on intensity is simple to implement, it is difficult to meet the 
requirements of dynamic measurement in practice due to the large amount of calculation and 
time-consuming [5]. The classical feature-based image matching process includes keypoint 
detection, keypoint description, feature matching and geometric transformation estimation.  
Most of the early methods focuse on a certain step in keypoint detection [6] or keypoint 
description [7].  

In view of the characteristics of high-speed train images, many researchers have improved 
popular keypoint detection or description algorithms which are based on classical keypoint 
detection algorithms such as SIFT [1, 8], SURF [5, 9, 10], ORB [11], etc. Peng [5] propose an 
abnormal detection algorithm for the bottom parts of the train based on the SURF feature of 
the rail edge image. Xie [1] designs an improved SIFT keypoint detection algorithm, which 
can reduce the number of keypoints in the flat area of the train component and increase the 
number of keypoints where the gradient of train components changes drastically, thereby 
improving the accuracy of keypoint matching. For feature matching, the nearest neighbor 
search algorithm is usually used to establish the pixel-level correspondence between two 
images. For the last step, according to DLT [12] or RANSCA [13], the 3×3 homography 
transformation matrix H is calculated. Then H is used to warp the source image so that the 
source image is aligned with the target image. The traditional feature-based image matching 
method only needs to complete the calculation of keypoint descriptors for keypoints, rather 
than for the entire image content. Therefore, the amount of calculation is small and thus more 
efficient, but traditional feature extraction algorithms usually only extract shallow-level 
features, and it is difficult to obtain deeper and more expressive features for them [14]. 
Therefore, the match result is poor when the appearance of the images changes too much 
owing to light, weather, etc. [15]. 
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With the rapid development of deep learning [16-18], more and more image matching 
methods based on deep learning have been proposed [19-21]. Similar to traditional methods, 
there are two main categories of methods here, one does not detect and describe keypoint [22, 
23], and the other does the opposite [24-26]. Most of the state-of-the-art methods can detect 
and describe keypoints simultaneously. D2-net [24] highly couples the keypoint detection 
module and description module. This method has good robustness to illumination changes, but 
it is slow and has low accuracy.  ASLFeat [25] uses DCN (Deformable Convolution Net) and 
peak detection to extract keypoints, which greatly improves the localization accuracy of 
keypoints. SuperPoint [26] proposed a self-supervised joint keypoint detection and description 
architecture, consisting of a common VGG encoder and two independent branches: keypoint 
detection and keypoint descriptors.   

However, most of the above learning feature-based methods do not utilize shallow features. 
This paper uses the advantages of multi-level feature maps to greatly improve the accuracy of 
keypoints positioning while generating more expressive and robust keypoint descriptors. 

 

 
Fig. 1. Visualized results of the proposed method. The proposed method can find high-quality 

matches even in low-textured regions (the second row).  It also works well on edge detection pictures 
(the third row).  

3. Algorithm 

Considering a standard high-speed train image matching process. Inputting the previously 
collected image Is and the current image If of the same train at the same chassis position into a 
computer. Then, it extracts keypoints and corresponding high-dimensional description vectors, 
matches these keypoints using certain method, e.g., deep learning method or nearest neighbor 
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algorithm. Finally, it calculates the perspective transformation matrix Hfs between Is and If. 
Thus, we get the pixel-level correspondence, which means the current and the previous high-
speed train chassis images matching is achieved. This work uses a deep learning network for 
joint keypoint detection and description.  

3.1 Keypoint Detection and Description Network  
The proposed keypoint detection and description network takes a gray scale high-speed train 
chassis image as input and outputs the coordinates of detected keypoints and high-dimensional 
vectors as the corresponding descriptors. As shown in Fig. 2, this network consists of three 
parts: backbone feature encoder, keypoint detector and keypoint descriptor. It up-samples and 
combines three layers of feature maps. Then, the keypoint detection and description are 
performed sequentially.   

3.1.1 Backbone Feature Encoder 
The proposed backbone feature extractor is fully convolutional. The steps size of Conv4 and 
Conv7 layers are set to 2 to complete two times spatial down-sampling, and the steps size of 
the remaining layers are all set to 1. Considering an input image 𝐼𝐼 ∈ ℝℎ×𝑤𝑤, the multi-scale 
features 𝑃𝑃𝑖𝑖 ∈ ℝℎ𝑖𝑖×𝑤𝑤𝑖𝑖×𝐶𝐶𝑖𝑖  are the output of Conv3, Conv6 and Conv9 layers. Where  𝑖𝑖 ∈
{1,6,9} ， ℎ𝑖𝑖,𝑤𝑤𝑖𝑖 ∈ {𝐻𝐻, 𝐻𝐻

2
, 𝐻𝐻
4

}  and 𝐶𝐶 ∈ {32,64,128} . The backbone multi-scale feature 
extraction can be expressed as Eq. (1). 

𝑃𝑃𝑖𝑖 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐼𝐼), 𝑖𝑖 ∈ {1,6,9}                                                      (1)  

 
Fig. 2. The architecture of the proposed keypoint detection and description network, which consists of 

three parts: backbone feature encoder, keypoint detector and keypoint descriptor.   
 
Pi is upsampled to the size of the original image in an unlearnable way, then multiplied 

by the corresponding weight coefficient and stacked together in channel dimension to obtain 
the final multi-scale features M ∈ ℝ𝐻𝐻×𝑊𝑊×224: 

𝑀𝑀 = 1
∑𝑤𝑤𝑖𝑖

∑𝑤𝑤𝑖𝑖𝑃𝑃𝑖𝑖                                                              (2) 

Where 𝑤𝑤𝑖𝑖 ∈ {1, 2, 3}，is the weight coefficient of the multi-scale feature map. In this 
way, this work obtains the rich local shape details contained in the shallow features with a 
small amount of computational overhead, which is of great help to improve the localization 
accuracy of keypoints. At the same time, multiple layers of semantic information and deep 
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features that are robust to noise caused by illumination changes are also preserved, which is 
crucial for obtaining keypoint descriptors that are highly distinguishable. 

3.1.2 Detector 
Feature detector D uses a simple 3×3 convolution layer to process the multi-scale feature graph 
M, obtains the keypoint map H and keypoint set K. 

 𝐾𝐾,𝐻𝐻 = 𝐷𝐷(𝑀𝑀)                                                         (3) 
The condition for a point (i, j) to be judged as a keypoint is that, the value at the coordinate 

(i, j) in H is bigger than the detection threshold α. Following [25], this work sets 𝛼𝛼 = 0.5. 
Considering that overly dense keypoints are detrimental to the performance of the network, a 
non-maximum suppression (NMS) is used to delete keypoints that are too close in H. 

3.1.3 Descriptor 
The keypoint descriptor F constructs the unit length descriptor F by L2 regularization of M in 
the channel dimension. Considering a keypoint k located at (i, j) in the keypoint map H, and 
its descriptor f can be constituted by the value located at (i, j) in the feature maps of each 
channel in M: 

𝑓𝑓𝑖𝑖,𝑗𝑗 = 𝑀𝑀𝑖𝑖,𝑗𝑗, 𝑓𝑓𝑖𝑖,𝑗𝑗 ∈ ℝ224                                                    (4) 
Descriptor f contains rich local shape details acquired from shallow features and deep 

features that are robust to noise caused by illumination and seasonal changes, so as to obtain 
keypoint descriptors with high discrimination and robustness. 

3.1.4 Joint Loss 

The total loss consists of two parts: the detection loss Ld and the description loss Lf. 
Considering two associated input images I and I', the keypoint sets are K and K'. The pseudo-
ground truth labels are Y and Y' respectively. Then, the keypoint detection can be regarded as 
a binary classification problem, on the predicted keypoint map, whether the point located at 
the pseudo-truth label point is judged as a keypoint. Obviously, the number of negative 
samples is much larger than the number of positive samples. Therefore, the loss of detector 
can be constructed by a biased cross-entropy loss function. The loss of keypoint detection of 
input image I can be described as follows: 

𝐿𝐿𝑑𝑑(𝐾𝐾,𝑌𝑌) = 1
𝐻𝐻𝐻𝐻

∑ 𝑙𝑙𝑑𝑑(𝐾𝐾𝑖𝑖𝑖𝑖,𝑌𝑌𝑖𝑖𝑖𝑖 , 𝜆𝜆)𝐻𝐻,𝑊𝑊
𝑖𝑖,𝑗𝑗                                               (5) 

𝑙𝑙𝑑𝑑 = −𝜆𝜆𝑌𝑌𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙�𝐾𝐾𝑖𝑖𝑖𝑖� − �1 − 𝑌𝑌𝑖𝑖𝑖𝑖� 𝑙𝑙𝑙𝑙𝑙𝑙�1 − 𝐾𝐾𝑖𝑖𝑖𝑖�                                    (6) 
Where λ is to deal with the case that positive samples are far fewer than negative samples. 

Meanwhile, the loss of keypoint detection of the image I' is: 
𝐿𝐿𝑑𝑑′(𝐾𝐾′,𝑌𝑌′) = 1

𝐻𝐻𝐻𝐻
∑ 𝑙𝑙𝑑𝑑(𝐾𝐾𝑖𝑖𝑖𝑖′ ,𝑌𝑌𝑖𝑖𝑖𝑖′ , 𝜆𝜆)𝐻𝐻,𝑊𝑊
𝑖𝑖,𝑗𝑗                                             (7)  

For the paired keypoint set K and K', the corresponding descriptors set are S and S'. Then 
descriptor loss Lf can be described by the ternary loss between S and S': 

𝐿𝐿𝑓𝑓(𝑆𝑆, 𝑆𝑆′) = 1
2𝑛𝑛
∑ �𝑙𝑙𝑓𝑓�𝑛𝑛
𝑖𝑖=1                                                       (8) 

Where：    
𝑙𝑙𝑓𝑓(𝑆𝑆𝑖𝑖) = 𝑚𝑚𝑚𝑚𝑥𝑥�0,𝑝𝑝(𝑠𝑠𝑖𝑖) − 𝑛𝑛(𝑠𝑠𝑖𝑖)� , 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆                                        (9) 

Considering two points k ∈ 𝐾𝐾 and k' ∈ 𝐾𝐾′, The condition for these two points to be paired 
is:  

�|𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑘𝑘,𝐻𝐻) − 𝑘𝑘′|� ≤ 𝜀𝜀                                               (10) 
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For 𝑠𝑠𝑖𝑖′ ∈ 𝑆𝑆′, p(si) and n(si) represent the positive sample distance between paired 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑖𝑖′, 
the negative sample distance between unpaired 𝑠𝑠𝑖𝑖  and 𝑠𝑠k′  respectively, 𝑠𝑠k′  represents points 
within the image boundary, since the image matching is for image content that exists in both 
images:  

𝑝𝑝(𝑑𝑑𝑖𝑖) = ||𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖′ ||                                                           (11)                                                                                                                   
  𝑛𝑛(𝑑𝑑𝑖𝑖) = ||𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑘𝑘′ ||                                                           (12)  

Considering the keypoint detection loss, as well as the description loss, the total loss of the 
network is shown in Eq. (13): 

𝐿𝐿𝑏𝑏(𝐾𝐾,𝐾𝐾′,𝑌𝑌,𝑌𝑌′, 𝑆𝑆, 𝑆𝑆′) = 𝐿𝐿𝑑𝑑(𝐾𝐾,𝑌𝑌) + 𝐿𝐿𝑑𝑑(𝐾𝐾′,𝑌𝑌′) + 𝐿𝐿𝑓𝑓(𝑆𝑆, 𝑆𝑆′)                    (13) 
                                                    

3.3 Datasets and Implementation Details 
At present, there is no free and open-source image dataset of high-speed rail train chassis for 
this task. The high-speed train chassis images matching dataset constructed in this paper 
includes 400 images at 1115×1000 resolution, among which the training set contains 300 
images and another 100 images are used to make the test set. The images are captured by linear 
array cameras installed near the railroad tracks. In order to simulate the actual working 
environment of railway system as much as possible, this work adds random optical distortion 
to these 400 pictures, including random brightness, saturation, contrast change and gaussian 
noise to make the proposed training set and test set. These different photometric distortions 
are randomly combined to produce images with completely different styles, which will greatly 
enhance the robustness of the network in complex environments. 

It is very difficult to obtain the real corresponding relationship between two high-speed 
train chassis images, and even the real keypoint coordinate labels for keypoint detection. 
Following [26], this work constructs a synthetic dataset. Each image contains several basic 
shapes, such as points, lines, triangles, quadrilaterals, and a corresponding annotation file. The 
annotation file records the coordinates of the corners and the endpoints, and the coordinate 
origin is the upper left corner of the image. These coordinates serve as labels for keypoint 
detector pre-training. Synthetic dataset image size: 1000*1000. We train the detector on the 
synthetic dataset and save the detector modle. Then, loading the detector model and inputting 
the images of the high-speed train chassis training set into the network, labelling each image 
of the training set, we then use the pseudo-ground truth labels and the high-speed train chassis 
training set image to retrain the keypoint detector. This training, then labeling, and retraining 
process is repeated several times until the final training loss no longer drops, thus completing 
the separate training of the keypoint detector. After this, this work uses the high-speed train 
image training set images and the latest pseudo-keypoint labels to conduct joint keypoint 
detection and description training. Using Adam optimizer, this work carries out joint training 
for 50k iterations.  lr = 10×10-3, batch size = 4.  

As shown in Fig. 3, a method similar to HPatches [27] is used to produce the test set. Five 
random projection transformations are applied to each original image in the test set to generate 
100 sequences, each of which contains one original image, five transformed images, and their 
transformation matrix H relative to the original image. At the same time, taking into account 
the complex working environment of the high-speed rail system, in order to test the robustness 
of the algorithm proposed in the case of large image appearance changes caused by 
illumination, season, weather, we randomly select 50 sequences from the 100 test sequences, 
add some kinds of photometric distortions to these 300 pictures to artificially simulate changes 
in the working environment of the railway system. Thus, the test set is divided into two parts 
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randomly and equally: one only contains random viewing angle changes, another has random 
perspective changes and optical distortions at the same time. 

 
Fig. 3. Dataset generation. A random perspective transformation is performed for every given image 

resulting in the creation of target image candidate, then we random select half of them to perform 
random several gaussian noise, contrast, saturation, blur or brightness changes to artificially simulate 

changes in the working environments. 

4. Experiments 
This work considers a standard high-speed train image matching process. Inputting the 
previously collected image Is and the current image If of the same train at the same chassis 
position into a computer. Then, it extracts keypoints and corresponding high-dimensional 
description vectors, matches these keypoints using certain method, e.g., deep learning method 
or nearest neighbor algorithm. Finally, we calculate the perspective transformation matrix Hfs 
between Is and If by the way provided by OpenCV. Thus, we get the pixel-level correspondence, 
which means the current and the previous high-speed train chassis images matching is 
achieved. For the purpose of inspecting the localization accuracy of keypoints and the 
robustness to photometric distortions of the proposed method, the quantitative evaluation is 
compared with three key and popular metrics: keypoint repetition rate (REP), matching score 
(M.S.) and mean matching accuracy (MMA) [28]. Their explanations are shown in these 
following formulas respectively. 

1. Mean Matching Accuracy (MMA%). MMA equals to the average of the ratio of the 
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 to 𝑁𝑁 𝑝𝑝𝑝𝑝𝑝𝑝−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 for N pairs of test images.  

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝− 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒
𝐼𝐼𝑓𝑓,𝐼𝐼𝑠𝑠                                                (14) 

Where 𝐼𝐼𝑓𝑓 and 𝐼𝐼𝑠𝑠  represent a pair of test images. N is the number of test image pairs. 
𝑁𝑁 𝑝𝑝𝑝𝑝𝑝𝑝−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 represents the number of keypoints that their descriptors are the closest to each 
other in a pair of test images. 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 represents the number of keypoint pairs that 
judged as pre-match whose projection error calculated according to Eq. (10) is less than the 
error threshold 𝜀𝜀. Since the similarity of keypoint descriptors and the coordinate threshold are 
considered at the same time, the mean matching accuracy measures the comprehensive 
performance of the proposed network. 

2. Keypoint Repetition Rate (REP%). REP equals to the average of the ratio of the 
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 to 𝑁𝑁(𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐼𝐼𝑓𝑓 , 𝐼𝐼𝑠𝑠)) for N pairs of test images.  

𝑅𝑅𝑅𝑅𝑅𝑅 = 1
𝑁𝑁
∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒

𝑁𝑁(𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐼𝐼𝑓𝑓,𝐼𝐼𝑠𝑠))𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐼𝐼𝑓𝑓,𝐼𝐼𝑠𝑠)                                           (15) 
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Where 𝐼𝐼𝑓𝑓 and 𝐼𝐼𝑠𝑠 represent a pair of test images. 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐼𝐼𝑓𝑓 , 𝐼𝐼𝑠𝑠) represents the area where 
both images are visible in a pair of test images. N is the number of test image pairs. 
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒  is the number of pair of keypoints that the projection error calculated 
according to Eq. (10) is less than the error threshold 𝜀𝜀 . 𝑁𝑁(𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐼𝐼𝑓𝑓 , 𝐼𝐼𝑠𝑠)) represents the 
number of keypoints that lie within the area visible in both figures. Since the coordinate 
threshold are considered here, the REP measures the performance of the keypoint detector. 

3. Matching Score (M.S.%):  M.S. equals to the average of the ratio of the 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝− 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 to 
𝑁𝑁(𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐼𝐼𝑓𝑓 , 𝐼𝐼𝑠𝑠)) for N pairs of test images. 

𝑀𝑀. 𝑆𝑆. = 1
𝑁𝑁
∑ 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒

𝑁𝑁(𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐼𝐼𝑓𝑓,𝐼𝐼𝑠𝑠))𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐼𝐼𝑓𝑓,𝐼𝐼𝑠𝑠)                                             (16) 

Where 𝐼𝐼𝑓𝑓 and 𝐼𝐼𝑠𝑠 represent a pair of test images. 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐼𝐼𝑓𝑓 , 𝐼𝐼𝑠𝑠) represents the area where 
both images are visible in a pair of test images. N is the number of test image pairs. 
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒  represents the number of pair of keypoints that their descriptors are the 
closest to each other.  

This work comprehensively compares the proposed network with the traditional hand-
designed feature extraction algorithms SIFT, ORB and SURF on the proposed test set. All of 
them are implemented using default settings in OpenCV, and the results are shown in Fig. 
4. The proposed approach outperforms traditional methods on all metrics.  In terms of MMA 
and M.S., which simultaneously measure keypoint detection and description, the proposed 
method has obvious advantages compared with the other three methods. Specifically, for REP, 
which only measures keypoint detection, the proposed method does not improve much 
compared to ORB, but this is because there are not enough keypoints for ORB detection. 

It is also worth noting that when both random perspective changes and illumination 
distortions are included, the proposed network has a greater advantage than when only random 
perspective changes are included, indicating that it can well deal with the task of matching 
high-speed rail train chassis images. 

The visual comparison between the proposed network and other methods is shown in Fig. 
5. The green lines in the figure represent the correct keypoint matching pairs, and the blue 
points represent the unpaired keypoints. The first row is the case that only includes the 
perspective transformation. Both the proposed method and SIFT, SURF can find enough 
keypoint pairs, while ORB extracts fewer keypoint pairs. For the second and third row, this 
work adds random optical distortion on the basis of the first row. The proposed network is the 
only method that can find dense keypoint pairs in this case, while ORB has obvious 
mismatches. The last two rows represent the effects in two challenging scenarios. The fourth 
row is low texture, and we add some noise on the left image, the keypoints extracted by ORB 
are still very few, while SIFT and SURF extract more keypoints in the left image than in the 
right image, especially SURF, but there are few keypoint pairs for successful matching. Due 
to the good design of the proposed network, the number of keypoints in the left figure has not 
increased. This also explains why the proposed method is significantly higher than the other 
two methods in the metric of REP in Fig. 4. The fifth row represents the extreme optical 
distortion. In this case, the other three methods have a large number of mismatches, while the 
proposed network is higher than the other three methods in terms of the number of extracted 
keypoints and the number of correct matches. We can draw the conclusion that, the proposed 
method is the only one that finds enough correct matches both at the low texture and extreme 
optical distortion.  
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Fig. 4. The comparison between the proposed network and the three methods of SIFT, ORB and 
SURF with MMA, REP and M.S. on the test set. V+PD indicates the situation with both optical 

distortion and random perspective changes. V only indicates the situation with random perspective 
changes. Overall indicates the average error value in these two situations. The proposed method has 

the best performance on all metrics. 
 

Based on the above analysis, we can conclude that traditional feature extraction methods 
have good results when facing image matching tasks that only include changes in perspective 
changes. But when the images to be matched have both the perspective changes and the image 
appearance and style changes caused by the illumination or weather changes, these methods 
are somewhat stretched, while the method proposed in this paper can well meet the complex 
environmental changes faced by the high-speed rail system. 
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Fig. 5. Visual comparison results of the proposed network with ORB, SIFT and SURF, the green lines 
indicate the correct keypoint matching pairs, and the blue points indicate the unpaired keypoints. The 
proposed method is significantly better than the other three methods in terms of both the number of 

matching pairs and robustness. 

5. Conclusion 
Image keypoint detection and description is a popular method for image matching. Finding 
pixel level correspondence precisely in complex work environment of the high-speed rail 
system is a big challenge, the quality of image registration of high-speed train chassis images 
has an important impact on the subsequent process such as defect detection and the safety of 
trains. The current matching methods require a lot of manpower and material resources, but 
the generalization of complex scenes such as weather, light, and seasonal changes is difficult 
to meet the actual needs. In this paper, a high-speed rail train chassis image matching dataset 
is established, including both optical distortions such as illumination and perspective changes 
to simulate the actual high-speed rail system working environment as much as possible. The 
high-speed train chassis matching method designed in this paper has achieved good results on 
the dataset. Detailed experiments show the huge improvement of the proposed network over 
traditional methods. By robustly extracting dense keypoints, it can be applied to the actual 
scenes of high-speed train safety detection, improving the matching effect of high-speed train 
chassis images, thus has a wide range of application prospects. 
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